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A horizontally infinite water layer cooled from above and absorbing solar radiation
is considered. Optical water types are classified according to Jerlov (Marine Optics,
Scientific, 1976). The convection and the heat transfer are simulated numerically
based on the linear equation of state and the time-dependent two-dimensional heat-
conduction and Navier–Stokes equations. To take into account the effect of solar
radiation, the conventional heat-conduction law for water with a free surface is
corrected by introducing a particular function of heat and solar-radiation fluxes.
Analytical expressions for this function are fitted.

1. Introduction
An interfacial layer of water cooled from above and absorbing solar radiation is

often divided into the cool skin and the warm layer. The former is characterized
by a large temperature gradient, while the latter absorbs a considerable amount of
incident solar energy. As a rule, these regions are considered separately based on
different models. The cool skin has been investigated by Paulson & Simpson (1981),
Soloviev & Schlüssel (1996), and Fairall et al. (1996), where the last group of
investigators consider the warm layer as well. Paulson & Simpson (1981) examine the
cool skin at zero and non-zero wind speed separately. They calculate the temperature
drop across it based on formulae that are derived for radiation-free conditions and
where heat flux through the free surface is reduced to take into account absorption
of solar radiation. The absorption is characterized by nine attenuation lengths fitted
for clear water. Fairall et al. (1996) treat the effect of solar radiation on the cool
skin in a similar way, use the same parameterization of solar-radiation flux in water
as Paulson & Simpson (1981), but modify the relations for the temperature drop
across the cool skin by simultaneously taking into account both shear-driven and
convectively driven turbulence.

Soloviev & Schlüssel (1996) consider the transformation of an undersurface sublayer
with dominating molecular heat conduction into cool or warm skin under the
assumption that heat flux through the interface is constant. They solve the heat-
conduction equation in a motionless medium with heat release caused by absorption
of solar radiation, with allowance for optical water types: for the first short-
wave spectral band of nine bands considered by Paulson & Simpson (1981), the
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irradiance-absorption coefficient is fitted for each optical water type. Soloviev &
Schlüssel consider the initial temperature in the layer to be uniform and assume that
the formation of a temperature profile in it is limited by a certain renewal time t∗ at
which the profile is completely destroyed by convection or long-wave breaking. Then,
the cycle repeats itself.

The renewal time is dependent on wind speed, heat flux through the interface,
downward irradiance, and the evaporation-caused increase in the near-surface salinity.
The effect of the irradiance is to eliminate the term in t∗ that describes the contribution
of the surface cooling to it if a certain stability criterion is satisfied. However, this
criterion, which was proposed by Woods (1980), is ill-founded because it is based
on using the critical flux Rayleigh number corresponding to both no downward
irradiance and a linear temperature profile. At zero wind speed, this ill-founded
criterion dominates in the procedure of calculating the renewal time. Moreover, under
this condition, the assumption that periodic destruction of the thermal sublayer is
complete contradicts the calculations of Foster (1971) and Verevochkin & Startsev
(2000) and the experimental data of Ginsburg, Zatsepin & Fedorov (1977). The
renewal-type model discussed here excludes consideration of possible steady-state
regimes of thermal convection.

The warm layer is considered by Woods (1980), Simpson & Dickey (1981), and
Fairall et al. (1996). A part of the warm-layer analysis, which is carried out by Woods
(1980) under the condition of light winds, is based on the above-mentioned ill-founded
stability criterion. Simpson & Dickey (1981) consider the cases of both zero and non-
zero wind speed based on the level-2 1

2
version of the Mellor & Yamada (1974)

turbulence closure scheme. As is known, in the case of zero wind speed, convection
can be not only intermittent but also steady-state and cellular (see Foster 1971;
Verevochkin & Startsev 1997, 2000). As the intermittent convection has, perhaps,
some features of turbulence, the steady-state cellular convection can hardly be treated
as turbulence. In addition, both versions of double-exponential parameterization used
by Simpson & Dickey to model downward irradiance in water of different optical
types are intended for water layers exceeding 10 m in depth. As will be shown below,
near the interface, they describe weaker absorption of solar radiation than occurs in
clear water characterized by the attenuation lengths proposed by Paulson & Simpson
(1981). Fairall et al. (1996) consider warm-layer effects within the scope of a turbulent
mixing model as well.

In contrast to the above-mentioned investigators, Verevochkin & Startsev (2000)
do not divide a plane water layer into sublayers with a priori given properties. Under
the condition of zero surface shear, they calculate temperature and velocity fields in
the undersurface water by solving the heat-conduction and Navier–Stokes equations.
It is the structure of the calculated temperature fields that allows an upper part
of the water layer cooled from above and absorbing solar radiation to be treated
as the cool skin. Regarding the sublayer adjacent to the bottom of the cool skin,
turbulent behaviour is not imposed on it here. As a result, it turns out that, depending
on the ratio of downward solar-radiation flux just under the interface to heat flux
through the interface, the sublayer can be in a regime of intermittent convection, or
in a regime of cellular steady-state convection, or convection-free. However, optical
water types are not taken into account in this work. Moreover, it will be shown that
parameterization of solar-radiation flux, which was proposed by Paulson & Simpson
(1981) and used by Verevochkin & Startsev (2000) and Fairall et al. (1996), results
in weaker absorption of solar energy by the undersurface clear water than occurs in
reality. This aspect of the problem as well as a new parameterization of downward
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irradiance, which takes into account the optical types of water and should be used
within water layers some tens of centimetres thick, are discussed in the next section
of this paper. This parameterization is used to investigate the effect of optical water
types on processes occurring in the water just under the air–water interface at zero
wind speed. These processes, in turn, determine the temperature drop across the
cool skin, which represents a decrease in surface temperature with respect to the
temperature maximum existing in water just below the interface (see Verevochkin &
Startsev 2000). Temperature and velocity fields are calculated based on the model
presented by Verevochkin & Startsev (2000). This model is free of empirical relations
so that the results obtained are applicable for any basin filled with water of the
corresponding optical type.

2. Parameterization of downward irradiance in water
Optical water types are classified according to Jerlov (1976), while the variation of

downward solar-radiation flux with depth is modelled by the formula

J (z) = J0

9∑
i=1

Di exp(−z/ξi). (1)

Here, J0 is the downward solar-radiation flux in water just under the interface, z is
the dimensional spatial coordinate taken vertically downward from the interface, Di

is the fraction of solar energy in each wavelength band, and ξi is the corresponding
attenuation length. With one exception, we divide the solar-radiation spectrum into
the same wavelength bands as Paulson & Simpson (1981). The exception is the first
wavelength band, which ranges from 0.31 to 0.6 µm here and from 0.2 to 0.6 µm
according to Paulson & Simpson (1981). Nevertheless, we use data of Paulson &
Simpson (1981) for all Di , because, according to Jerlov (1976), the fraction of incident
solar radiation within the band 0.2–0.31 µm is negligible (see as well the spectral
distribution of incident solar energy at the sea surface in Woods 1980, p. 382). Since
the classification of Jerlov (1976) concerns the optical spectral range, we fit only ξ1

and ξ2 for each optical water type and take data of Paulson & Simpson (1981) for the
last seven wavelength bands (the spectral range 0.9–3 µm). The details are as follows.
When fitting ξ1, we divide the wavelength band 0.31–0.6 µm into eleven subranges,
where the first subrange is bounded by 0.31 and 0.35 µm, while the others are 0.025 µm
wide. To each subrange, we assign the absorption coefficient Ki proposed by Jerlov
(1976) for its lower boundary and calculate the function

Jλ(z) =

n∑
i=1

D′
i exp(−Kiz)

n∑
i=1

D′
i

, (2)

where the coefficients D′
i are proportional to fractions of incident solar energy in each

subrange and n = 11. Then, function (2), which, for the considered spectral band,
characterizes the attenuation of downward irradiance in water of a certain optical
type, is approximated by the single exponential exp(−z/ξ1) fitted within the 14 cm
thick layer. The wavelength band 0.6–0.9 µm is divided into twelve 0.025 µm wide
subranges. For the first five of them, Ki corresponding to a certain optical water
type is taken from Jerlov (1976). For the others, we use the absorption coefficients
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Figure 1. Function Jλ(z) calculated for both optical water type II and the wavelength band
0.6–0.9 µm (solid line) and the fitted exponential exp(−z/ξ2) (dashed line).

Water type ξ1 (m) ξ2 (m)

I 24.1 0.673
II 11 0.664

III 6.54 0.654
1 3.36 0.653
3 2.27 0.645
5 1.56 0.627
7 1.13 0.606
9 0.736 0.58

Table 1. Attenuation lengths fitted within the 14 cm thick layer for water of different optical
types classified according to Jerlov in the spectral ranges 0.31–0.6 µm (ξ1) and 0.6–0.9 µm (ξ2).

presented by Curcio & Petty (1951) for distilled water. Then, the function Jλ(z) in (2),
where n = 12, is calculated and the exponential exp(−z/ξ2) is fitted within the 14 cm
thick layer. For the optical water type II, the function Jλ(z) and the corresponding
exponential exp(−z/ξ2) are plotted in figure 1.

The attenuation lengths fitted in this way within 14 cm thick layers of water
having different optical types are presented in table 1. Along with ξ3–ξ9 and Di

presented by Paulson & Simpson (1981), they are used to calculate curves (d) and
(e) in figure 2, which compares the attenuation of downward irradiance according to
different models. One can see that our calculation carried out for water of optical type I
predicts much higher attenuation of downward irradiance than the parameterization
of Simpson & Dickey (1981) and higher attenuation than even the parameterization
of Paulson & Simpson (1981) developed for clear water. Since water of optical type I
is almost clear, we considered the parameterization proposed by Paulson & Simpson
(1981) more thoroughly. For this purpose, we fitted exponentials within layers of
different thickness based on data of Defant (1961). These data show the spectral
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Figure 2. Vertical profiles of J/J0 in water of different optical types: (a) type III (Simpson &
Dickey 1981), (b) type I (Simpson & Dickey 1981), (c) clear water (Paulson & Simpson 1981),
(d) type I (classification of Jerlov), (e) type 9 (classification of Jerlov). Here, J and J0 are
values of downward irradiance at depth z and just under the interface, respectively.

nine-band distributions of downward irradiance in water at certain depths and, in
turn, were used by Paulson & Simpson (1981) to evaluate the attenuation lengths
proposed by them. It turns out that the attenuation length ξ1 equal to 34.8 m, which
was proposed by Paulson & Simpson (1981) and used by Verevochkin & Startsev
(2000) for the wavelength band 0.2 to 0.6 µm, corresponds to the fitting within the
100 m thick layer.

In the case of the 10 cm thick layer and the same wavelength band, ξ1 fitted with the
use of the two available points (see Defant 1961) is equal to 23.8 m. This value is close
to the attenuation length ξ1 obtained by us for both the spectral range 0.31–0.6 µm
and water of optical type I according to the classification of Jerlov (see table 1). The
attenuation length ξ2 = 2.27 m, which was used by Paulson & Simpson (1981) and
Verevochkin & Startsev (2000), corresponds to the 10 m thick layer. In the case of
the 10 cm thick layer, the data of Defant (1961) yield ξ2 = 0.6m (see figure 3). This
value is close to the attenuation lengths ξ2 obtained by fitting exponentials within the
14 cm thick layer for water of all optical types (see table 1). The attenuation lengths
ξ3–ξ9 used by Paulson & Simpson (1981) and Verevochkin & Startsev (2000) were
fitted within layers less than 10 cm thick. Therefore, they are suitable for the problem
under consideration, which concerns both modelling convection in water just under
the air–water interface and calculation of the temperature drop across the cool skin.
Note that the absorption coefficients obtained by Soloviev & Schlüssel (1996) for an
unknown fitting depth and the first wavelength band do not lead to values of ξ1

calculated here.

3. Modelling of temperature and velocity fields
We consider a plane horizontally infinite water layer cooled from above and

absorbing solar radiation at zero wind speed. The layer has a free upper boundary
and a rigid insulated bottom. The upward heat flux through the free boundary Q is
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Figure 3. Ratio of downward irradiance at depth z (Jλ) to the irradiance just under water
surface (J0λ). Squares show data of Defant (1961) presented for the spectral band 0.6–0.9 µm
and modelled by the exponential exp(−z/0.6) (line).

assumed to be time- and horizontal-coordinate-independent. The Prandtl number Pr
is equal to 7. The mathematical model used here for solving the problem is discussed
in detail by Verevochkin & Startsev (2000). Next, we recall some its features. Water is
considered as an incompressible fluid with constant properties except for the density as
it affects the buoyancy term (the Boussinesq approximation). The system of equations
is formed by the linear equation of state, the time-dependent two-dimensional heat-
conduction equation, and the time-dependent two-dimensional equation resulting
from the Navier–Stokes equations. All equations are presented in dimensionless form,
and solutions to them (temperature and velocity fields) are sought as Fourier series
with spatial variables and time-dependent coefficients. These series are such that
temperature and velocity necessarily satisfy specified boundary conditions. From this
point of view, free boundary conditions are desirable for velocity, because they allow
its vertical component to be sought as a sine series in the vertical spatial coordinate
z and, in this way, simplify significantly the calculations.

However, free boundary conditions, which mean that no tangential force is applied
to a fluid through its boundary, are not suitable for a free water surface. In fact,
according to Berg, Acrivos & Boudart (1966), water can absorb surfactant substances,
which reduce its surface tension. Therefore, if convective circulation broke the
surfactant film, radially swept it out, and, in this way, increased the surface tension,
it would undergo deceleration there. Due to this effect, a free water surface is never
involved in gravity convection, which develops under it. So, Ginsburg et al. (1981), who
used the shadow method to visualize gravity convection in fresh and salt water and
in ethyl alcohol, write at the end of their paper that “Gravity convection developing
in water does not affect the surface film. . . That is why a speck of dust, for hours,
can be observed lying on a free surface of water in which turbulent convection has
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developed.” Since a free water surface is motionless it applies a tangential decelerating
force to an underlying moving layer.

Using free boundary conditions in our model, we consider a free water surface as
inelastic and replace the decelerating surface film by a decelerating sublayer, which
is adjacent to the surface and where certain volume retarding forces are assumed to
act. This replacement is obviously possible if the sublayer introduced is sufficiently
thin. The necessary thinness is achieved by the method of fitting sublayer parameters:
in a series of calculations, we increase the effectiveness of water deceleration in the
sublayer (the parameter β0 in (6), see Verevochkin & Startsev 2000) and decrease the
sublayer thickness (the parameter 1/(2N0) in (6), see Verevochkin & Startsev 2000)
as long as the solution obtained varies. With these parameters fitted, the decelerating
sublayer occupies a small upper part of the viscous sublayer and does not distort
convective motion and heat transfer outside.

From the physical point of view, the effect of a motionless rigid boundary is identical
to that of a motionless free water surface: they both decelerate adjacent water layers.
Moreover, Ginsburg et al. (1981) present evidence that the type of boundary (rigid or
free) is not important for gravity-convection heat transfer in water: temperature drops
occurring in it near free and rigid boundaries are identical when identical heat fluxes
are transferred through them. This would not be the case if the free surface moved.
Motion of the free surface would intensify convective heat tranfer through it and,
consequently, would decrease a temperature drop near it. This effect was observed, in
particular, in ethyl alcohol, where, at identical tranferred heat fluxes, the temperature
drop occurring near its free surface was approximately three times lower than near
the rigid bottom (see Ginsburg et al. 1981). Allowing for the facts discussed above,
we replace boundaries of both types by decelerating sublayers.

Earlier, we used our model to investigate convection and heat transfer in water
filling vessels with insulated walls and bottom and cooled through its free surface in
the absence of downward irradiance (Verevochkin & Startsev 1997). There are many
experimental works that present reliable data concerning these phenomena under the
above-mentioned conditions (see, for example, Katsaros et al. 1977), because it is
easy to measure vertical temperature profiles in the laboratory environment and to
calculate the heat flux through a free water surface, for example, by using the measured
rate of water cooling. Therefore, the comparison of calculated and experimental
data here can serve as an experimental verification of the model discussed. The
mathematical model used in Verevochkin & Startsev (1997) is identical with that used
in Verevochkin & Startsev (2000) under the condition that J0 = 0.

The dimensionless system of equations forming the considered mathematical
model at J0 = 0 contains the Prandtl number Pr and the flux Rayleigh number
R = αgQh4/(νρck2) as parameters. Here h is the layer thickness; k, the thermal
diffusivity; ρ, water density at some reference temperature; c, the specific heat;
α, the coefficient of thermal volume expansion; ν, the kinematic viscosity; and g, the
acceleration due to gravity. If R > 107, convection is intermittent and, at any fixed
spatial point, the water temperature varies with time almost as a random function.
Our calculations (Verevochkin & Startsev 1997) were performed under this condition.
Some instantaneous vertical temperature profiles are shown in figure 4. The cool skin
is clearly seen there. However, this was not the subject of the investigation under
discussion. The heat conduction law

Nu = ARan (3)
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Figure 4. Instantaneous vertical profiles of dimensionless temperature at different moments of
time, where z′ is the dimensionless vertical coordinate normalized by the total layer thickness.
The vertical dashed line (z′ = 0.034) shows the average position of the cool-skin boundary for
the profiles presented.

was under investigation there, where

Nu =
QL

ρck�T
(4)

is the Nusselt number and

Ra =
αg�T L3

kν
(5)

is the Rayleigh number. For water with a free surface, the empirical value of the
constant A measured by different investigators varies from 0.11–0.13 (Grachev &
Yaroshevich 1989) to 0.24–0.25 (Ginsburg & Fedorov 1978). In these experiments,
�T was measured not as a time-average temperature drop across the cool skin but as
an average temperature difference between the water surface and an undersurface level
situated at a depth of about 10 cm (Grachev & Yaroshevich 1989) or 2 cm (Ginsburg &
Fedorov 1978). Therefore, for different values of R and Pr, Verevochkin & Startsev
(1997) calculated �T as the time-average temperature difference between the total-
layer boundaries and considered the distance between these boundaries as a
characteristic length L. In the case of room temperature, Q = 100 W/m−2, and for the
considered range of R, this characteristic length varies from about 12 cm (R = 5 × 108)
to 17 cm (R = 2 × 109). It turns out that the calculated �T satisfies the heat conduction
law (3) with n= 1/3 and A not a constant but a function of the Prandtl number. For
some values of the Prandtl number (some values of water temperature), the calculated
values of A are shown in table 2. The calculated range of A covers more than a half
of its range found experimentally. Unfortunately, quantitative comparison is possible
only with the results of Katsaros et al. (1977), because only that paper presents
data on water temperature during the experiments (21.6–42.7 ◦C). The corresponding
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T (◦C) Pr A

40 4.3 0.144
20 7 0.16
5 11 0.21

Table 2. Dependence of the heat-exchange parameter A on the Prandtl number (water
temperature).

calculated values of A are in the range 0.144–0.16, while the experimental value
presented by Katsaros et al. (1977) is equal to 0.156. The remarkable agreement
between these calculated and experimental data is obvious. In our opinion, this
agreement proves experimentally that deceleration of water near both its free elastic
surface and a rigid bottom can be modelled by using decelerating sublayers.

Now, let us turn to considering the effect of the optical water type on convection and
heat transfer in the vicinity of the air–water interface. If the value of R is sufficiently
large (water layer is sufficiently thick) then, near the interface, the dimensional solution
to the problem is independent of the position of the layer bottom and, therefore,
applicable for an arbitrarily deep water basin. Results of the calculations presented
in this paper are obtained at R = (1–5) × 108, corresponding to the above-mentioned
condition.

Regardless of the specific optical water type, processes occurring under the interface
are qualitatively the same as described by Verevochkin & Startsev (2000). They
are characterized by the Rayleigh number (5), where, now, �T is the dimensional
temperature drop across the cool skin or its time-average value if this quantity
fluctuates, while L is a certain characteristic length, which has a different physical
meaning in different regimes of convection. At small J0/Q, the convection is
intermittent and the temperature drop across the cool skin fluctuates. With increasing
J0/Q, the Rayleigh number, which is defined here by using the time-average depth
of the undersurface temperature maximum zm as a characteristic length (L = zm),
decreases. When it reaches its critical value Racr , the convection becomes steady-state
and �T jumps up. This transition occurs at J0/Q = 2.1 in contrast to J0/Q = 1.9
according to Verevochkin & Startsev (2000). The spatial scale of the steady-state
mode of convection is equal to the thermal compensation depth, which, consequently,
should be used as L when defining Ra. Note that, according to Woods (1980), the
sublayer of thermal compensation absorbs solar radiation at a rate equal to the rate
of surface energy loss. After a jump-like growth of Ra, which is associated with both
change of the spatial scale of the convection and the jump of �T , an increase in
J0/Q causes a gradual decrease in both �T and Ra. When Ra reaches its critical
value again, solar radiation quenches the convection without a jump of �T . Both the
quenching of the convection and its transition to the steady-state mode occur at the
same critical Rayleigh number Racr = 252–280, which agrees with the calculations
of Verevochkin & Startsev (2000). Temperature and velocity fields calculated here
resemble qualitatively similar fields described by Verevochkin & Startsev (2000) and,
therefore, are not presented in this paper. The time-average temperature drop across
the cool skin �T calculated at different R satisfies a heat-conduction law of the form

Nu = ARa1/3f (J0/Q), (6)

where f (0) = 1. Since Ra enters into (6) to a power of 1
3
, equations (4)–(6) yield the



118 Y. G. Verevochkin and S. A. Startsev

1.2

1.1

1.0

0.9

0.8f –3/4

0.7

0.6

0.5

0.4
0 1 2

J0/Q
3 4 5

(b)

(a)

Figure 5. Function correcting the heat-conduction law to a power of − 3
4

versus J0/Q:
solid line, this paper; dotted line, Verevochkin & Startsev (2000).

relation

�T = A−3/4

(
ν

αgρ3c3k2

)1/4

Q3/4f −3/4 (7)

according to which �T is independent of L. Paulson & Simpson (1981) and Fairall
et al. (1996) recommended use of a relation differing from (7) by the absence of the
function f −3/4 with A = 0.2 and A = 0.23, respectively. Our calculations carried
out at Pr = 7, J0 = 0 (f = 1), and different values of R yield A= 0.215. At J0 = 0,

the temperature drop across the cool skin is smaller than across the total water
layer (see figure 4). Therefore, the value of the constant A calculated here is larger
than that calculated by us for both the total water layer and the same value of the
Prandtl number (see table 2). It is noteworthy that relations (6) and (7), a priori,
are not imposed on the water layer, because we do not use them when calculating
the temperature fields. Moreover, the governing dimensionless equations of our model
even do not contain Nu and Ra as parameters (see Verevochkin & Startsev 2000). It
is the form of the calculated temperature fields themselves that makes relations
(6) and (7) valid. The function f (J0/Q), which enters (6) and (7), is identical
for water of all optical types† and, to a power of − 3

4
, is shown in figure 5. At

J0/Q � 1.8 and J0/Q � 2.1, it agrees with the calculations of Verevochkin & Startsev
(2000). The range 1.8 <J0/Q < 2.1, where this agreement is violated, corresponds
to the intermittent convection according to these calculations and to the steady-state
convection according to Verevochkin & Startsev (2000). Thus, having been taken
into account, the actual undersurface attenuation lengths of downward irradiance
in oceanic water extend the region of existence of the intermittent convection
from J0/Q � 1.8 to J0/Q � 2. We note that using ξ1 = 23.8m and ξ2 = 0.6m, which
correspond to fitting exponentials for the data of Defant (1961) within the 10 cm
thick layer, yields the same result. This extension is, probably, associated with the fact
that an increase in absorption of solar radiation, which is associated with a decrease

† According to Soloviev & Schlüssel (1996), �T is practically independent of water type as well.
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Figure 6. Numerical (solid line) and analytical (dotted line) representations of the function
f −3/4(y) at (a) 4.8 � y � 2.1 and (b) y � 2, where y = J0/Q.

in attenuation lengths, diminishes the spatial scale of the steady-state convection (the
thermal compensation depth) and, consequently, the corresponding Rayleigh number.

We have fitted analytical expressions for the function f −3/4(y) in the ranges y � 2
and 2.1 � y � 4.8 (y = J0/Q), which correspond to the regimes with convection:

f −3/4(y) = y0 + B exp

(
− y

t0

)
at 2.1 � y � 4.8, (8)

f −3/4(y) = P − Ty at y � 2, (9)

where y0 = 0.41387, B = 3.08308, t0 = 1.38337, P = 0.99412, and T = 0.09352.
Both these expressions and the numerically calculated function f −3/4(y) are plotted
in figure 6.

Thus, taking into account the actual absorption of solar radiation by the
undersurface water layer extends the range of the intermittent convection and changes
the function f (J0/Q), which enters the heat-conduction law (6), (7) and, now, has an
analytical representation.
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